Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Brain Sci ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2233340

ABSTRACT

BACKGROUND: Common long-term sequelae after COVID-19 include fatigue and cognitive impairment. Although symptoms interfere with daily living, the underlying pathology is largely unknown. Previous studies report relative hypometabolism in frontal, limbic and cerebellar regions suggesting focal brain involvement. We aimed to determine whether absolute hypometabolism was present and correlated to same day standardized neurocognitive testing. METHODS: Fourteen patients included from a long COVID clinic had cognitive testing and quantitative dynamic [18F]FDG PET of the brain on the same day to correlate cognitive function to metabolic glucose rate. RESULTS: We found no hypometabolism in frontal, limbic and cerebellar regions in cognitively impaired relative to cognitive intact patients. In contrast, the cognitive impaired patients showed higher cerebellar metabolism (p = 0.03), which correlated with more severe deficits in working memory and executive function (p = 0.03). CONCLUSIONS: Hypermetabolism in the cerebellum may reflect inefficient brain processing and play a role in cognitive impairments after COVID-19.

2.
Brain Behav Immun ; 101: 93-135, 2022 03.
Article in English | MEDLINE | ID: covidwho-1588234

ABSTRACT

IMPORTANCE: COVID-19 is associated with clinically significant symptoms despite resolution of the acute infection (i.e., post-COVID-19 syndrome). Fatigue and cognitive impairment are amongst the most common and debilitating symptoms of post-COVID-19 syndrome. OBJECTIVE: To quantify the proportion of individuals experiencing fatigue and cognitive impairment 12 or more weeks following COVID-19 diagnosis, and to characterize the inflammatory correlates and functional consequences of post-COVID-19 syndrome. DATA SOURCES: Systematic searches were conducted without language restrictions from database inception to June 8, 2021 on PubMed/MEDLINE, The Cochrane Library, PsycInfo, Embase, Web of Science, Google/Google Scholar, and select reference lists. STUDY SELECTION: Primary research articles which evaluated individuals at least 12 weeks after confirmed COVID-19 diagnosis and specifically reported on fatigue, cognitive impairment, inflammatory parameters, and/or functional outcomes were selected. DATA EXTRACTION & SYNTHESIS: Two reviewers independently extracted published summary data and assessed methodological quality and risk of bias. A meta-analysis of proportions was conducted to pool Freeman-Tukey double arcsine transformed proportions using the random-effects restricted maximum-likelihood model. MAIN OUTCOMES & MEASURES: The co-primary outcomes were the proportions of individuals reporting fatigue and cognitive impairment, respectively, 12 or more weeks following COVID-19 infection. The secondary outcomes were inflammatory correlates and functional consequences associated with post-COVID-19 syndrome. RESULTS: The literature search yielded 10,979 studies, and 81 studies were selected for inclusion. The fatigue meta-analysis comprised 68 studies, the cognitive impairment meta-analysis comprised 43 studies, and 48 studies were included in the narrative synthesis. Meta-analysis revealed that the proportion of individuals experiencing fatigue 12 or more weeks following COVID-19 diagnosis was 0.32 (95% CI, 0.27, 0.37; p < 0.001; n = 25,268; I2 = 99.1%). The proportion of individuals exhibiting cognitive impairment was 0.22 (95% CI, 0.17, 0.28; p < 0.001; n = 13,232; I2 = 98.0). Moreover, narrative synthesis revealed elevations in proinflammatory markers and considerable functional impairment in a subset of individuals. CONCLUSIONS & RELEVANCE: A significant proportion of individuals experience persistent fatigue and/or cognitive impairment following resolution of acute COVID-19. The frequency and debilitating nature of the foregoing symptoms provides the impetus to characterize the underlying neurobiological substrates and how to best treat these phenomena. STUDY REGISTRATION: PROSPERO (CRD42021256965).


Subject(s)
COVID-19 , Cognitive Dysfunction , COVID-19/complications , COVID-19 Testing , Fatigue/etiology , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
3.
Mol Med ; 27(1): 120, 2021 09 26.
Article in English | MEDLINE | ID: covidwho-1440900

ABSTRACT

BACKGROUND: Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. SHORT CONCLUSION: Substitution of EPO may-among other beneficial EPO effects in severe COVID-19-circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Erythropoietin/genetics , Hypoxia/drug therapy , Lung/drug effects , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Erythropoietin/analogs & derivatives , Erythropoietin/therapeutic use , Humans , Hypoxia/genetics , Hypoxia/pathology , Hypoxia/virology , Lung/pathology , Lung/virology , Pandemics , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , SARS-CoV-2/drug effects , Post-Acute COVID-19 Syndrome
4.
Mol Med ; 26(1): 58, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-599124

ABSTRACT

In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Erythropoietin/therapeutic use , Neuroprotective Agents/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory System Agents/therapeutic use , Brain Stem/drug effects , Brain Stem/immunology , Brain Stem/virology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Double-Blind Method , Humans , Lung/drug effects , Lung/immunology , Lung/virology , Pandemics , Phrenic Nerve/drug effects , Phrenic Nerve/immunology , Phrenic Nerve/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proof of Concept Study , Randomized Controlled Trials as Topic , Recombinant Proteins/therapeutic use , Respiratory Muscles/drug effects , Respiratory Muscles/immunology , Respiratory Muscles/virology , SARS-CoV-2 , Severity of Illness Index , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/virology
SELECTION OF CITATIONS
SEARCH DETAIL